2 8 M ar 2 01 1 Irreducible Triangulations of Surfaces with Boundary ∗

نویسندگان

  • Alexandre Boulch
  • Éric Colin de Verdière
  • Atsuhiro Nakamoto
چکیده

A triangulation of a surface is irreducible if no edge can be contracted to produce a triangulation of the same surface. In this paper, we investigate irreducible triangulations of surfaces with boundary. We prove that the number of vertices of an irreducible triangulation of a (possibly nonorientable) surface of genus g ≥ 0 with b ≥ 0 boundaries is O(g + b). So far, the result was known only for surfaces without boundary (b = 0). While our technique yields a worse constant in the O(.) notation, the present proof is elementary, and simpler than the previous ones in the case of surfaces without boundary.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Algorithm for Computing Irreducible Triangulations of Closed Surfaces in E and Its Application to the TriQuad Problem

Let S be a compact surface with empty boundary. A classical result from the 1920s by Tibor Radó asserts that every compact surface with empty boundary (usually called a closed surface) admits a triangulation [1]. Let e be any edge of a triangulation T of S . The contraction of e in T consists of contracting e to a single vertex and collapsing each of the two triangles meeting e into a single ed...

متن کامل

Irreducible triangulations of 2-manifolds with boundary

This is a talk on joint work with Maŕıa José Chávez, Seiya Negami, Antonio Quintero, and Maŕıa Trinidad Villar. A triangulation of a 2-manifold M is a simplicial 2-complex with underlying space homeomorphic to M . The operation of contraction of an edge e in a triangulation T of M is the operation which consists in contracting e to a single vertex and collapsing each face that meets e to a sing...

متن کامل

Irreducible Triangulations of Low Genus Surfaces

The complete sets of irreducible triangulations are known for the orientable surfaces with genus of 0, 1, or 2 and for the nonorientable surfaces with genus of 1, 2, 3, or 4. By examining these sets we determine some of the properties of these irreducible triangulations.

متن کامل

Irreducible triangulations of surfaces with boundary

A triangulation of a surface is irreducible if no edge can be contracted to produce a triangulation of the same surface. In this paper, we investigate irreducible triangulations of surfaces with boundary. We prove that the number of vertices of an irreducible triangulation of a (possibly non-orientable) surface of genus g ≥ 0 with b ≥ 0 boundary components is O(g + b). So far, the result was kn...

متن کامل

k-NORMAL SURFACES

Following Matveev, a k-normal surface in a triangulated 3-manifold is a generalization of both normal and (octagonal) almost normal surfaces. Using spines, complexity, and Turaev-Viro invariants of 3-manifolds, we prove the following results: • a minimal triangulation of a closed irreducible or a bounded hyperbolic 3-manifold contains no non-trivial k-normal sphere; • every triangulation of a c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011